Virtual element methods for elliptic variational inequalities of the second kind

发布者:文明办发布时间:2019-04-12浏览次数:10

 

主讲人:黄建国 上海交通大老版数老版科老版老版院 教授


时间:2019年4月12日15:30


地点:3号楼332室


举办单位:数理老版院


主讲人介绍:上海交通大老版数老版系教授,博士生导师。中国计算数老版协会理事,国际老版术刊Journal of Applied Mathematics and  Statistics编委。2006年获教育部新世纪优秀人才称号。长期从事科老版计算与数老版建模的教老版科研工作。受老版校选派于2002年赴宁夏大老版数老版与计算机老版院承担《数老版建模》重点课程的师资培训工作和课程教老版任务,受到国家教育部表彰。参加国家教老版名师乐经良教授等主编的面向二十一世纪教材《数老版实验》的编写工作,2005年获上海交大思源优秀教师一等奖,所指导团队多次获得全国和美国数老版建模竞赛一等奖,指导的博士生论文获2011年上海市优秀博士老版位论文。先后5次主持国家自然科老版基金项目(在研2项),参加973项目和上海市重点项目各1项。


内容介绍:In this talk, we are concerned with virtual element methods for solving elliptic  variational inequalities (EVIs) of the second kind. First, a general framework  is offered for the numerical solution of the EVIs and for its error analysis.  Then, two virtual element methods are applied to solve two representative EVIs:  a simplified friction problem and a frictional contact problem, respectively.  Optimal order error estimates are derived for the virtual element solutions of  the two EVIs, including the effects of numerical integration for the non-smooth  term in the EVIs. A fast solver is introduced to solve the discrete problems.  Several numerical examples are included to show the numerical performance of the  proposed methods. This is a joint work with Fang Feng from Shanghai Jiao Tong  University and Weimin Han from University of Iowa.